I₁₆⁴⁻ Ions in Crystalline (Theobromine)₂.H₂I₈; X-Ray Structure of (Theobromine)₂.H₂I₈

By FRANK H. HERBSTEIN* and MOSHE KAPON

(Department of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel)

Summary Crystal structure analysis shows that (theobromine)₂.H₂I₈ is a polyiodide salt composed of alternating cationic and anionic layers; the former consist of hydrogenbonded protonated theobromine species and the latter of I_{16}^{4-} polyiodide ions.

ALTHOUGH the polyiodide ions studied so far have many geometrical features in common, their structures all differ in detail. The anion in (theobromine)₂.H₂I₈, first prepared by Jorgensen¹ and later by Shaw,² fits into this overall pattern; furthermore it occurs as essentially discrete I₁₆⁴⁻

units and is thus the largest discrete polyiodide anion investigated until now.

The dark blue needle-shaped crystals are triclinic, $a = 14 \cdot 47(1)$, $b = 14 \cdot 07(1)$, $c = 7 \cdot 75(1)$ Å, $\alpha = 91 \cdot 2$, $\beta = 100 \cdot 8$, $\gamma = 91 \cdot 2^{\circ}$, space group $P\overline{1}$ (from structure analysis), $D_{\rm m} = 2 \cdot 92$ g cm⁻³, $D_{\rm o} = 2 \cdot 95$ g cm⁻³, Z = 2 ($C_{14}H_{18}N_8O_4I_8$ units). Intensities of 4200 reflections were measured on a Stoe semiautomatic Weissenberg diffractometer using graphite-monochromated Mo- K_{α} radiation. The structure was solved by the Patterson method and refined by least-squares (anisotropic temperature factors for iodine atoms and isotropic

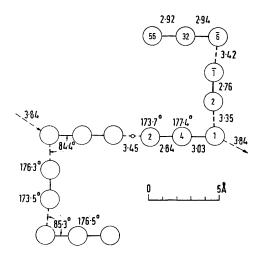


FIGURE. The centrosymmetric I_{16}^{4-} ion is shown in projection on (001). The best plane has been calculated through the central $I_2-I_3--I_3--I_2$ unit and the deviations of all the iodine atoms from this plane are given in units of 10^{-2} Å. The direction of the shortest interionic vector of 3.84 Å is shown.

- ¹ S. M. Jorgensen, Ber., 1869, 2, 460.
 ² G. E. Shaw, J. Chem. Soc., 1896, 69, 102.
 ³ F. H. Herbstein and M. Kapon, Nature Phys. Sci., 1972, 239, 153.
 ⁴ M. D. Lie, K. Kapon, and M. B. Babin, J. Chem. Phys. 1064.
- ⁴ J. M. Reddy, K. Knox, and M. B. Robin, J. Chem. Phys., 1964, 40, 1082.

temperature factors for other atoms; hydrogen atoms were not considered). The current R-factor is 11% (goodness of fit = 0.96), and the e.s.d.s. of I–I and C–C distances are ca. 0.003 and ca. 0.05 Å respectively.

There are alternating cationic and anionic layers stacked along the *c*-axis; a rather similar arrangement is found in $(\text{phenacetin})_2.\text{HI}_5.^3$ The cationic layer consists of theo-bromine molecules protonated at N(9) and hydrogenbonded to one another in both [100] and [010] directions; the anionic layers consist of S-shaped centrosymmetric I_{16}^{4-} units. Their detailed structure is shown in the Figure. $(\text{Theobromine})_2$. H_2I_8 is thus a polyiodide salt and should be formulated explicitly as $(H^+C_7H_8N_4O_2)_4$. $(I_3^-.I_2.I_3^-.I_2.I_3^-)$. The shortest distance between adjacent I_{16}^{4-} units is 3.84 Å, similar to that found in the tri-iodide chains in (benzamide)2-.HI₃;⁴ the other interionic distances are typical van der Waals contacts. However, the distance of 3.84 Å represents an interaction sufficiently weak, in our view, for the I_{16}^{4-} species to be considered as discrete polyiodide anions. Financial support from the Deutsche Forschungsge-

meinschaft is gratefully acknowledged.

(Received, 2nd June 1975; Com. 620.)